Getting Ready For A Level Further Maths Task 0.2 – Introduction to Complex Numbers

The square root of a negative number

Until now you may have learnt that you cannot square root a negative number, but now you are going to see how this is possible in the following way:

Suppose $i^2 = -1$ then we can deduce that $\sqrt{-1} = i$

This means we can use *i* every time we want to find the square root of a negative number.

Example: $\sqrt{-9} = \sqrt{9}\sqrt{-1} = 3i$ Check this by working backwards: $(3i)^2 = 9i^2 = 9 \times -1 = -9$

Powers of *i*

We can find other powers of *i* also:

Examples: $i^3 = i^2 \times i = -1 \times i = -i$ and $i^4 = i^2 \times i^2 = -1 \times -1 = 1$ etc....

Calculations with Complex Numbers

Complex numbers are any numbers that have *i* in them, such as 3 + 4i or 2 - 7i. You can calculate with them as long as you remember that $i^2 = -1$.

Examples: (3 + 4i) + (5 - 7i) = 8 - 3i $(2 - 3i)(3 + 5i) = 6 - 9i + 10i - 15i^2 = 6 + i - (15 \times -1) = 6 + i + 15 = 21 + i$

*Remember to watch the videos for fuller explanations and demonstrations.

Exercise

Now try these examples, simplifying as far as possible:

1)	a) √-25	b) √-49	c) √-121				
2)	a) i ³	b) <i>i</i> ⁴	c) i ⁵	d) i ⁸	e) i ³⁴	f) i ⁻¹	
3)	a) $(4 - 7i) + (2 - 6i)$		b) (3 + 8 <i>i</i>) -	-(1+5i)	c) $(11 + i) - (12 - 2i)$		
4)	a) (2 + 5 <i>i</i>)(3	(3 + 2i)	b) $(3 + 7i)(4)$	1-i)	c) $(6-4i)(7)$	7 — 8i)	

5) Use the quadratic formula to solve for *x* and give answers as simplified as possible:

a)
$$x^2 + 4x + 5 = 0$$
 b) $x^2 + 6x + 11 = 0$ c) $2x^2 + 3x + 2 = 0$

6) Try these divisions, making the denominator real in the same way you would rationalise the denominator using surds (remember that $i = \sqrt{-1}$, so it is just like working with surds!)

a)
$$\frac{3+4i}{2+i}$$
 b) $\frac{22-2i}{4-5i}$ c) $\frac{2+4i}{5-3i}$

Answers

1) a)	5i	b)	7i	c)	11i						
2) a)	-i	b)	1	c)	i	d)	1	e)	-1	f)	-i
3) a)	6 — 13i			b)	2 + 3i			c)	-1 + 3i		
4) a)	-4 + 1	9i		b)	19 + 2	25i		c)	10 – 7	76i	
5) a)	-2 ± i			b)	-3 ± v	/ <u>2</u> i		c)	$\frac{-3}{4} \pm \frac{\sqrt{2}}{4}$	<u>7</u> i	
6) a)	2 + i			b)	$\frac{98}{41} + \frac{1}{4}$	02. 1		c)	$\frac{-1}{17} + \frac{1}{1}$	3. 7	