## Getting Ready For A Level Further Maths <br> Task 0.2 - Introduction to Complex Numbers

The square root of a negative number
Until now you may have learnt that you cannot square root a negative number, but now you are going to see how this is possible in the following way:
Suppose $\quad i^{2}=-1$ then we can deduce that $\sqrt{-1}=i$
This means we can use $i$ every time we want to find the square root of a negative number.
Example: $\sqrt{-9}=\sqrt{9} \sqrt{-1}=3 i \quad$ Check this by working backwards: $(3 i)^{2}=9 i^{2}=9 \times-1=-9$

## Powers of $\boldsymbol{i}$

We can find other powers of $i$ also:
Examples: $\quad i^{3}=i^{2} \times i=-1 \times i=-i \quad$ and $i^{4}=i^{2} \times i^{2}=-1 \times-1=1$ etc. $\ldots$

## Calculations with Complex Numbers

Complex numbers are any numbers that have $i$ in them, such as $3+4 i$ or $2-7 i$.
You can calculate with them as long as you remember that $i^{2}=-1$.
Examples: $\quad(3+4 i)+(5-7 i)=8-3 i$

$$
(2-3 i)(3+5 i)=6-9 i+10 i-15 i^{2}=6+i-(15 \times-1)=6+i+15=21+i
$$

*Remember to watch the videos for fuller explanations and demonstrations.

## Exercise

Now try these examples, simplifying as far as possible:
1)
a) $\sqrt{-25}$
b) $\sqrt{-49}$
c) $\sqrt{-121}$
2)
a) $i^{3}$
b) $i^{4}$
c) $i^{5}$
d) $i^{8}$
e) $i^{34}$
f) $i^{-1}$
3)
a) $(4-7 i)+(2-6 i)$
b) $(3+8 i)-(1+5 i)$
c) $(11+i)-(12-2 i)$
4)
a) $(2+5 i)(3+2 i)$
b) $(3+7 i)(4-i)$
c) $(6-4 i)(7-8 i)$
5) Use the quadratic formula to solve for $x$ and give answers as simplified as possible:
a) $x^{2}+4 x+5=0$
b) $x^{2}+6 x+11=0$
c) $2 x^{2}+3 x+2=0$
6) Try these divisions, making the denominator real in the same way you would rationalise the denominator using surds (remember that $i=\sqrt{-1}$, so it is just like working with surds!)
a) $\frac{3+4 i}{2+i}$
b) $\frac{22-2 i}{4-5 i}$
c) $\frac{2+4 i}{5-3 i}$

## Answers

1) a) $5 i$
b) $7 i$
c) 11 i
2) a) -i
b) 1
c) i
d) 1
e) $-1 \quad$ f) $-i$
3) a) $6-13 i$
b) $2+3 i$
c) $-1+3 i$
4) a) $-4+19 \mathrm{i}$
b) $19+25 i$
c) $10-76 \mathrm{i}$
5) a) $-2 \pm i$
b) $-3 \pm \sqrt{2} \mathrm{i}$
C) $\frac{-3}{4} \pm \frac{\sqrt{7}}{4} i$
6) a) $2+i$
b) $\frac{98}{41}+\frac{102}{41} \mathrm{i}$
C) $\frac{-1}{17}+\frac{13}{17} \mathrm{i}$
