Student nam	<u>.</u>

Cambridge Technical (Double Award) L3 Applied Science Getting Ready For Pack Summer 2023

Worksheet	Topic	Complete?
1	The Periodic table	
2	Atoms and ions	
3	Electron arrangement	
4	Structure types	
5	Writing chemical formula	
6	Balancing equations	

Target Grade	Type of task	Task and subject specific skill reference	Deadline
All	Workbook complete	Workbook Work through this workbook if you have any issues with it or need assistance contact us @ chinkitt@haywardsheath.ac.uk or info@haywardsheath.ac.uk	11th September 2023
All	Review GCSE work	Worksheet 1: The Periodic Table An understanding of the Periodic Table is important for any science course. This worksheet reviews what you should have learnt in GCSE Science. If you need help completing this activity, GCSE bitesize revision is helpful: https://www.bbc.com/bitesize/topics/zxnftv4	from 11 th September 2023
All	Reviewing GCSE work	Worksheet 2 and 3: Atoms, ions and electron arrangement This activity reviews atomic structure and ions. You will need a scientific calculator for this activity – this is an essential requirement for this course. For help in converting pm (picometres) to metres, click on this link https://physics.nist.gov/cuu/Units/prefixes.html	from 11 th September 2023
All	Worksheet questions	Worksheet 4: Structure types You should have covered the different types of substances – metallic, ionic, simple covalent, giant covalent and monatomic in GCSE Science. These are some bbc bitesize notes to help you answer the questions: https://www.bbc.com/bitesize/guides/zjfkw6f/revision/1	from 11 th September 2023
All	Understanding chemical formulas	Worksheet 5: Writing chemical formula Understanding how to write chemical formula is vital for success in chemistry. You may find this video helpful: https://www.youtube.com/watch?v=URc75hoKGLY	from 11 th September 2023
All	Balancing equations	Worksheet 6: Balancing equations You should have learned how to write balanced equations in your GCSE course. Attempt as many as you can. You may find this video helpful: https://www.youtube.com/watch?v=2Juem0lcifE	from 11 th September 2023

Notes:		

Hand-in date for getting ready for pack for Double award = 11^{th} September

	Getting Ready For	
	Applied Science	
Your Name		
CAMTEC L3 Applied Science	Transition from GCSE to Level 3 Applied Science	Summer 2023

We are delighted you have chosen to study Applied Science at Haywards Heath College.

Instructions: This pack will help you make the best possible start to studying this subject.

The tasks in this pack:

- should take you about 8 hours to complete.
- should be handed into your teacher when teaching starts **from 11**th **September 2023** with your name on it for assessment.
- are also available on the internet follow the links in the document.

If you need help: The tasks are designed to get a bit more difficult as you work through them as they are preparing you for studying at a higher level and to become an effective independent learner. You should try to get as far as you can working on your own but if you do need help, please email us at info@haywardsheath.ac.uk telling us which Getting Ready For pack you are working on and what help you need. Help is available throughout the summer holidays.

Skills Focus for this G	etting Ready for Pack
Maths skills:	GCSE science knowledge, including:
Converting to SI units	Periodic table
Calculating sizes of atoms	Atomic structure
Balancing chemical symbol equations	Structure types
Working out formula of ionic compounds	Chemical symbol equations

THE PERIODIC TABLE

1	а	In what order are the elements arranged in the Periodic Table?
	b	How many electrons are in the outer shell of atoms of the following elements? aluminium
	С	Give the group and period number of the element with electron structure 2,8,5.
		group period
	d	Which group are the following elements in? The electron structure of these elements is given.
		2,8,8,1 2,6 2,8,18,5
2	а	Explain why elements that are in the same group in the Periodic Table have similar properties.
	b	Explain why the elements in Group 0 are unreactive.
	С	Explain why the elements in Group 1 are very reactive.

GCSE REVISION

Atoms, ions, equations, Periodic Table

<u>1</u> a) Complete the following table about protons, neutrons and electrons.

	neutron	proton	electron
relative charge			
relative mass			

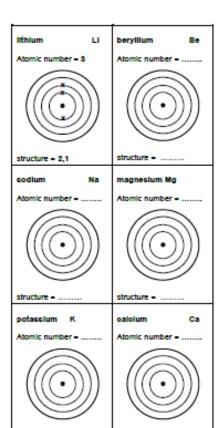
b)	Define the ter	m mass nun	nber						
	5								
c)	Define the tei	m atomic nu	ımber						
<u>2</u>	Complete the	following tab	le about some	atoms and	ions. The fir	st row has bee	en done for y	ou.	
		T	<u> </u>			T			I
	Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure	
		İ	1						i

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
¹9 _F −	ion	9	19	9	10	10	2,8
40 18Ar							
²⁷ ₁₃ Al ³⁺							
				16	18	18	
				19	20	18	
				15	16	15	

<u>3</u>	The diameter of an indium atom is 310 pm.
a)	What is the diameter of an indium atom in metres? Give your answer in standard form.
o)	How many indium atoms would fit in a line 20 cm long? Give your answer to 3 significant figures.

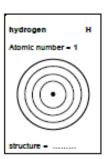
- 4 This question is about the Periodic Table
- a) Name each of the following groups.

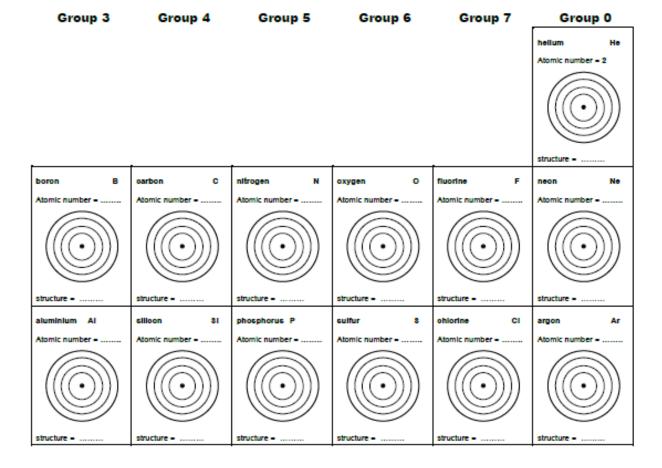
Group 1	
Group 7	
Group 0	


b) Which group would the following elements be in?

```
element with electron structure 2,8,6 element with electron structure 2,8,8 element with electron structure 2,8,18,3 element with electron structure 2,8,18,3
```

- **<u>5</u>** Balance each of the following equations.
- a) $K + O_2 \rightarrow K_2O$
- b) $CaCO_3 + HCl \rightarrow CaCl_2 + H_2O + CO_2$
- c) $C_3H_8 + O_2 \rightarrow CO_2 + H_2O$


Worksheet 3: Electron arrangement


Group 1 Group 2

structure -

structure -

- The first 20 elements in the Periodic Table are shown below. The elements are arranged in order of increasing atomic number. Fill in the atomic number for each element. The first three have been done for you.
- 2) Complete the boxes to show the electronic structure of the first 20 elements. The box for lithium has been done for you.
- 3) What is the link between the Group number and the electronic structure?

STRUCTURE TYPES

1) Which type of structure do the following substances have?

	K ₂ O	К	O2	CH₂O	Ar	S ₈	Br ₂	Cr	Fel₃	MgSO ₄	N ₂ H ₄
ionic											
simple molecular											
metallic											
monatomic											
giant covalent											

2) Look at the properties of the following substances.

			Electrical conductivity as		
Substance	Melting point (°C)	Boiling point (°C)	solid	liquid	
А	587	843	does not conduct	conducts	
В	28	201	does not conduct	does not conduct	
С	-39	357	conducts	conducts	
D	-189	-101	does not conduct	does not conduct	
E	2157	2895	does not conduct	does not conduct	
F	1024	1598	does not conduct	conducts	

	a) Which of these compounds could have an ionic structure?
	b) Which of these compounds could have a simple molecular structure?
	c) Which of these compounds could have a metallic structure?
	d) Which of these compounds could have a giant covalent structure?
3)	Write the formula of the following ionic compounds.
	a) potassium oxide
	b) magnesium nitrate e) ammonium hydroxide

a) Aluminium oxide is an ionic substance with formula Al₂O₃ . Explain what this formula means	
b) Explain why aluminium oxide has a high melting point	
c) Explain why aluminium oxide does not conduct electricity as a solid but does when melted.	
	,
5) a) Aluminium is a metal. Explain why it has a high melting point	
b) Explain why aluminium conducts electricity.	
a) Ammonia is a simple molecular substance with formula NH ₃ . Explain what this formula mean	18.

ammonia has a low n		
ammonia does not co	any	
diamond is hard but		
graphite conducts ele	l does	

8) Complete the table to draw any missing stick or dot-cross diagrams for the molecules shown below.

Substance	– H –	oxygen O ₂	oxygen fluoride OF₂
Stick diagram	H—N—H		
Dot-cross diagram			

Worksheet 5: Writing chemical formula Complete the table with the formula of the ions (e.g. magnesium ion is Mg^{2+}) and the ionic compounds.

	Name	Formula
1	sodium ion	
2	chloride ion	
3	sulfate ion	
4	cobalt(II) ion	
5	potassium oxide	
6	calcium hydroxide	
7	iron(III) oxide	
8	aluminium bromide	
9	magnesium nitrate	
10	lithium carbonate	

Worksheet 6: Balancing equations

- An equation is balanced when there are the same number of atoms of each type on both sides of the equation.
- An equation can only be balanced by putting numbers in front of formulas <u>you cannot change the formula itself.</u>
- Equations can be written with state symbols: (s) = solid, (l) = liquid, (g) = gas, (aq) = aqueous (dissolved in water).

How to balance an equation:

- a) Calculate how many atoms of each type are on each side of the equation.
- b) If the numbers are the same then the equation is balanced.
- c) If the numbers are not the same, then numbers are put in front of the formulas (this adds more of that substance). You cannot change the formulas (this would make a different substance). Hint start with unbalanced elements that only appear in one substance on each side of the equation.
- d) Keep doing this until the equation is balanced.

Questions

1)
$$Ca + O_2 \rightarrow CaO$$

2)
$$Na_2O + H_2O \rightarrow NaOH$$

3) Al +
$$O_2 \rightarrow Al_2O_3$$

4) Na +
$$Cl_2 \rightarrow NaCl$$

5)
$$Na_2CO_3 \rightarrow Na_2O + CO_2$$

6)
$$K + O_2 \rightarrow K_2O$$

7)
$$C_4H_8 + O_2 \rightarrow CO_2 + H_2O$$

8)
$$Fe_2O_3 + HCl \rightarrow FeCl_3 + H_2O$$

9)
$$F_2 + KBr \rightarrow KF + Br_2$$

10)
$$C_5H_{12} + O_2 \rightarrow CO_2 + H_2O$$

- 11) $NH_3 + O_2 \rightarrow NO + H_2O$
- 12) $HNO_3 \rightarrow NO_2 + H_2O + O_2$

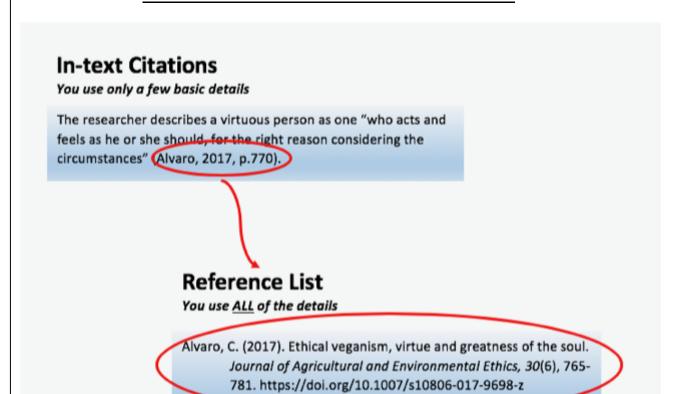
SECTION 2: Includes a range of tasks which gets progressively more difficult. Being able to identify the difference between a risk and a hazard is an essential skill.

Acids & Bases - Throughout the Double award segment of the qualification you will perform a range of titrations, so you need to be familiar (comfortable) with the difference between an Acid or Base. Being able to REFERENCE is an essential skill, learning Harvard referencing style rather than just sticking in a website link is expected of all students!

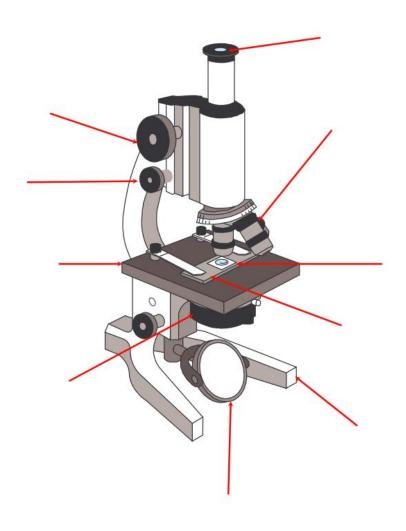
Symbol	Name	Danger and how to minimise	Examples of chemicals that have it
h			

Acid or Base Label the following as Acid or Base and give the full name of each compound. CH3COOH= H2SO4-LIOH HCL-NH3-NAOH-H3PO4-Now name one further example of an acid and a base Acid example= Acid Colour in universal indicator= Acid Colour in Phenolphthalein= Base example= Base colour in universal indicator=

Base colour in Phenolphthalein=

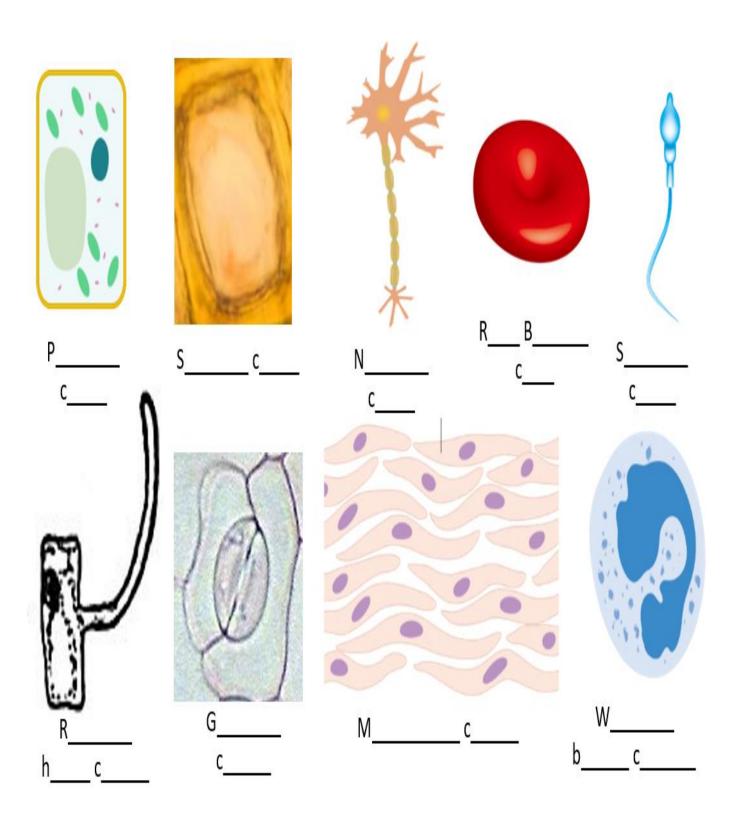

How to reference like a professional in your written coursework

Those of you who have registered to do double awards will be required to reference contact using the Harvard referencing format. We take plagiarism very seriously and it is important that you know how to show that you have used someone else's idea.

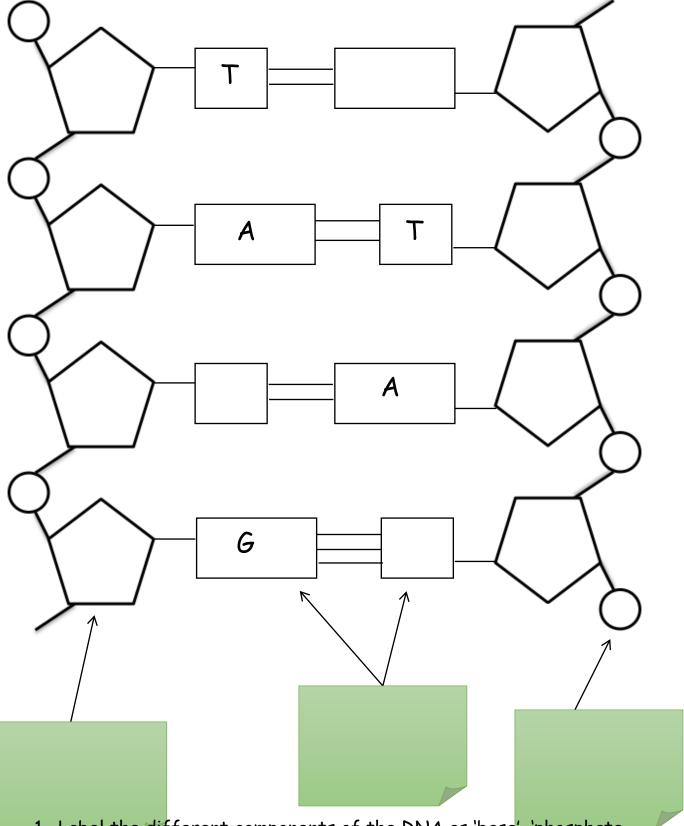

Spend time watching the following link which shows you how to use the latest completely free software to make Harvard referencing easy (15) How To Use Zotero For Referencing In 2023 (NEW Tutorial) - YouTube

Have a go at inputting an In-text citation and forming a reference list which comes at the end of the document. Use programs like Zotero to do this for you! GET COMFORTABLE WITH THIS Zotero does both of these at the click of a button

MICROSCOPE: LABEL IT



cover slip	slide	stage	objective lens	eyepiece
fine focus	mirror	stand	iris	coarse focus


Can you name the different parts of a microscope?

Plant cell		Animal cell	
1.			
2.			
Table 2 shows the various plants. Table 2	he amounts of three d	ifferent substances in t	he seeds of
Plant		al mass of three diffe seeds of various pla	
· iuiit	Proteins	Polysaccharides	Lipids
buckwheat	15	84	1
brazil nut	14	8	78
brazii nut			
mung bean	29	69	2
mung bean sesame	25 seed which has the gr	69 16 eatest percentages of	2 59
mung bean sesame Name the plant s i polymers in it	25 seed which has the grats seeds taining substances in i	16 eatest percentages of	59

Write down the names of the specialised cells you see below

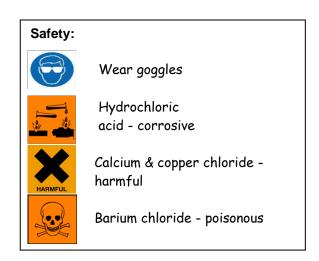
The Structure of DNA (notice the number of bonds between bases)

 Label the different components of the DNA as 'base', 'phosphate group' or 'deoxyribose sugar'.

Page 22

2. Add the missing complementary base pairs to the diagram.

Tests for Negative Ions (Anions)


You have seen how to test for some of the first parts of a chemical compounds. Now you are going to learn how to test for some of the second parts.

Apparatus:

- Test tubes
- Delivery tube to fit test tube

Access to:

- · Dilute nitric acid
- Silver nitrate solution
- Dilute hydrochloric acid
- Barium chloride solution
- · Lime water
- Samples of a solid chloride, bromide, iodide, sulphate, carbonate

Test for chlorides, bromides and iodides:

- **a.** Put 1 small spatula of the chloride, bromide or iodide in a test tube.
- **b.** Add about 5cm³ water and shake to dissolve the compound.
- **c.** Add a few drops of dilute nitric acid.
- **d.** Add a small amount of silver nitrate solution and record your results in the table.

Observations:

Compound	Colour immediately	Colour after a few minutes	Anion present	
Potassium chloride			Name	Formula
Potassium bromide				

Potassium iodide						
Test for Sulphates:						
a. Put 1 small spatula of	the sulphate in a t	test tube.				
b. Add about 10cm ³ water to dissolve it.						
c. Add barium chloride solution dropwise until you see a result.						
Observation:						
When the barium chloride was added to the sulphate solution						
Word equation:						
Sodium sulphate + barium chloride →						
Balanced equation:						
Formula of sulphate ion: Test for carbonates:						
a. Put a spatula full of th	e carbonate into a	test tube.				
b. Put 5cm³ limewater into another test tube.						
c. Add 5cm³ dilute hydrochloric acid to the carbonate.						
d. Quickly put the bung of the delivery tube in the test tube with the other end in the lime water.						
e. Record your results.						
Observation:						
When the acid was adde	d the carbonate					
The lime water turned						
The gas was						
Word equation:						
Hydrochloric acid + calcium carbonate →						
Balanced equation:						

Formula of carbonate ion:

Flame Tests

These tests allow us to identify unknown compounds. The cation is the positively charged ion involved in the compound. For it to be positive it must have lost an electron have a look at what colours are expected for the following cations in the compounds below *note it depends on charge*

All compounds of a particular element give the same flame colour, but the chlorides are the best to use because they vaporise relatively easily in a Bunsen flame. This experiment will allow you to determine the characteristic flame colours of certain elements in Groups 1 and 2 of the periodic table.

Apparatus: Safety: Nichrome wire Wear goggles Lithium chloride • Calcium chloride Concentrated hydrochloric • Potassium chloride acid - corrosive · Sodium chloride Calcium & copper chloride -You will need access to: harmful • Concentrated hydrochloric acid Barium chloride - poisonous • Small beakers (100cm³)

Get familiar with the Colours produced from these flame test.

Below is the typical method steps you would follow during a flame test

- 1. Clean a nichrome wire by heating it in a Bunsen flame, dipping it in a beaker of concentrated acid and then heating it again; continue with this until the wire produces little or no colour in the flame.
- 2. Dip the clean wire into the acid and then into the powdered compound.
- 3. Hold the wire so that the solid is in the edge of the flame and note any colour in the flame that results. Write your observations in the table below.

State the expected outcomes

Commonwed	Flower Colours	Cation Present		
Compound	Flame Colour	Name	Formula	
Sodium chloride				
Lithium chloride				
Calcium chloride				
Potassium chloride				
Barium chloride				
Copper chloride				

The final task on the following page is a functional group challenge. Knowing or being able to identify the functional groups in a chemical structure could allow for scientists to determine the expected behaviour of a chemical.

Use the following link to assist you in identifying the organic compounds Functional Groups In Organic Chemistry (masterorganicchemistry.com)

Q1 Identify the functional groups in each of the molecules below. The first example has been done for you

a) CH₃CHCH₂

Alkene

b) CH₃CH₂COCH₃

c) CH₃CHBrCH₃

d) CH₃COOH

- f) CH₃(CH₂)₄CHO
- g) /
- h) _____
- i) 0
- k) OH
- I) OH
- m) CH₂CHCOCH₂CH₃

Hand-in date for getting ready for pack for Double award = 11^{th} September